Select publicatons are highlighted below. For a full publication list, please visit PubMed

Link to Article
Objectives: Sjögren disease (SjD) diagnosis often requires either positive anti-SSA antibodies or a labial salivary gland biopsy with a positive focus score (FS). One-third of patients with SjD lack anti-SSA antibodies (SSA-), requiring a positive FS for diagnosis. Our objective was to identify novel autoantibodies to diagnose ‘seronegative’ SjD.
Methods: IgG binding to a high-density whole human peptidome array was quantified using sera from SSA- SjD cases and matched non-autoimmune controls. We identified the highest bound peptides using empirical Bayesian statistical filters, which we confirmed in an independent cohort comprising SSA- SjD (n=76), sicca-controls without autoimmunity (n=75) and autoimmune-feature controls (SjD features but not meeting SjD criteria; n=41). In this external validation, we used non-parametric methods for binding abundance and controlled false discovery rate in group comparisons. For predictive modelling, we used logistic regression, model selection methods and cross-validation to identify clinical and peptide variables that predict SSA- SjD and FS positivity.
Results: IgG against a peptide from D-aminoacyl-tRNA deacylase (DTD2) bound more in SSA- SjD than sicca-controls (p=0.004) and combined controls (sicca-controls and autoimmune-feature controls combined; p=0.003). IgG against peptides from retroelement silencing factor-1 and DTD2 were bound more in FS-positive than FS-negative participants (p=0.010; p=0.012). A predictive model incorporating clinical variables showed good discrimination between SjD versus control (area under the curve (AUC) 74%) and between FS-positive versus FS-negative (AUC 72%).

Link to article
Objectives: Sjögren’s disease (SjD) is a systemic autoimmune disease characterized by focal lymphocytic infiltrate of salivary glands (SGs) and high SG IFNγ, both of which are associated with elevated lymphoma risk. IFNγ is also biologically relevant to mesenchymal stromal cells (MSCs), a SG resident cell with unique niche regenerative and immunoregulatory capacities. In contrast to the role of IFNγ in SjD, IFNγ promotes an anti-inflammatory MSC phenotype in other diseases. The objective of this study was to define the immunobiology of IFNγ-exposed SG-MSCs with and without the JAK1 & 2 inhibitor, ruxolitinib.
Methods: SG-MSCs were isolated from SjD and controls human subjects. SG-MSCs were treated with 10 ng/ml IFNγ +/- 1000 nM ruxolitinib. Experimental methods included flow cytometry, RNA-sequencing, chemokine array, ELISA and transwell chemotaxis experiments.
Results: We found that IFNγ promoted expression of SG-MSC immunomodulatory markers, including HLA-DR, and this expression was inhibited by ruxolitinib. We confirmed the differential expression of CXCL9, CXCL10, CXCL11, CCL2 and CCL7, initially identified with RNA sequencing. SG-MSCs promoted CD4+ T cell chemotaxis when pre-stimulated with IFNγ. Ruxolitinib blocks chemotaxis through inhibition of SG-MSC production of CXCL9, CXCL10 and CXCL11.
Conclusions: These findings establish that ruxolitinib inhibits IFNγ-induced expression of SG-MSC immunomodulatory markers and chemokines. Ruxolitinib also reverses IFNγ-induced CD4+ T cell chemotaxis, through inhibition of CXCL9, -10 and -11. Because IFNγ is higher in SjD than control SGs, we have identified SG-MSCs as a plausible pathogenic cell type in SjD. We provide proof of concept supporting further study of ruxolitinib to treat SjD.
